Synaptic control of mRNA translation by reversible assembly of XRN1 bodies.
نویسندگان
چکیده
Repression of mRNA translation is linked to the formation of specific cytosolic foci such as stress granules and processing bodies, which store or degrade mRNAs. In neurons, synaptic activity regulates translation at the post-synapse and this is important for plasticity. N-methyl-D-aspartate (NMDA) receptor stimulation downregulates translation, and we speculate that this is linked to the formation of unknown mRNA-silencing foci. Here, we show that the 5'-3' exoribonuclease XRN1 forms discrete clusters associated with the post-synapse that are different from processing bodies or stress granules, and we named them synaptic XRN1 bodies (SX-bodies). Using primary neurons, we found that the SX-bodies respond to synapse stimulation and that their formation correlates inversely with the local translation rate. SX-bodies increase in size and number upon NMDA stimulation, and metabotropic glutamate receptor activation provokes SX-body dissolution, along with increased translation. The response is specific and the previously described Smaug1 foci and FMRP granules show a different response. Finally, XRN1 knockdown impairs the translational repression triggered by NMDA. Collectively, these observations support a role for the SX-bodies in the reversible masking and silencing of mRNAs at the synapse.
منابع مشابه
Stress granules and processing bodies are dynamically linked sites of mRNP remodeling
Stress granules (SGs) are cytoplasmic aggregates of stalled translational preinitiation complexes that accumulate during stress. GW bodies/processing bodies (PBs) are distinct cytoplasmic sites of mRNA degradation. In this study, we show that SGs and PBs are spatially, compositionally, and functionally linked. SGs and PBs are induced by stress, but SG assembly requires eIF2alpha phosphorylation...
متن کاملEvolutionarily Conserved 5’-3’ Exoribonuclease Xrn1 Accumulates at Plasma Membrane-Associated Eisosomes in Post-Diauxic Yeast
Regulation of gene expression on the level of translation and mRNA turnover is widely conserved evolutionarily. We have found that the main mRNA decay enzyme, exoribonuclease Xrn1, accumulates at the plasma membrane-associated eisosomes after glucose exhaustion in a culture of the yeast S. cerevisiae. Eisosomal localization of Xrn1 is not achieved in cells lacking the main component of eisosome...
متن کاملDendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation.
Intracellular mRNA transport and local translation play a key role in neuronal physiology. Translationally repressed mRNAs are transported as a part of ribonucleoprotein (RNP) particles to distant dendritic sites, but the properties of different RNP particles and mechanisms of their repression and transport remain largely unknown. Here, we describe a new class of RNP-particles, the dendritic P-...
متن کاملThe activation of the decapping enzyme DCP2 by DCP1 occurs on the EDC4 scaffold and involves a conserved loop in DCP1
The removal of the 5'-cap structure by the decapping enzyme DCP2 and its coactivator DCP1 shuts down translation and exposes the mRNA to 5'-to-3' exonucleolytic degradation by XRN1. Although yeast DCP1 and DCP2 directly interact, an additional factor, EDC4, promotes DCP1-DCP2 association in metazoan. Here, we elucidate how the human proteins interact to assemble an active decapping complex and ...
متن کاملP-bodies and stress granules: possible roles in the control of translation and mRNA degradation.
The control of translation and mRNA degradation is important in the regulation of eukaryotic gene expression. In general, translation and steps in the major pathway of mRNA decay are in competition with each other. mRNAs that are not engaged in translation can aggregate into cytoplasmic mRNP granules referred to as processing bodies (P-bodies) and stress granules, which are related to mRNP part...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 128 8 شماره
صفحات -
تاریخ انتشار 2015